REQUIRED SUMMER WORK FOR
 HONORS PRECALCULUS

Teacher - Mr. Yates
This summer work includes both review topics and some new topics. One of the goals of summer work is to have you practice and reinforce skills you already have; the other primary goal is to have you work independently to learn new skills. These goals are essential to honors students.

All problems are to be completed neatly, with answers in appropriate spaces. Appropriate work and/or explanation should be shown in the spaces provided.

If the difficulty of this work is overwhelming, you should consider a regular academic class rather than honors. In the academic classes, we will spend more class time on these topics rather than accelerating ahead to other things. If you are weak in any of your fundamental math skills or if your dedication to academics is not up to par, you will not fully benefit from taking an honors course.

If you have any questions, feel free to email me at jyates@bloomsd.k12.pa.us Please type "summer honors work" in the subject line. I try to check my email at least once a week over the summer. Do not wait until the week before school to email me with a concern.

Have a good summer, and I will see you in August!

For each relation, state the domain and range; is it a function? (yes or no)

1. $\{(-1,2),(3,10),(-2,20),(3,11)\}$
2. $\{(0,2),(13,6),(2,2),(3,1)\}$

Given $f(x)=|3 x-4|+5$, find each value.
3. $f\left(\frac{1}{3}\right)$
4. $f(-2)$
5. $f(2)$

Name all values of x that are not in the domain of the given function.
6. $f(x)=\frac{x-2}{x+3}$
7. $f(x)=\frac{1}{|2 x+5|}$
8. $f(x)=\frac{x^{2}+9}{x^{2}-16}$
3)
2) $d=$ \qquad $r=$ \qquad
\qquad
\qquad
4) \qquad
5) \qquad
Use the vertical line test to determine if each relation is a function. (yes/no)
16.

17.

6) \qquad
7) \qquad
8) \qquad
16) \qquad

Find the zero of each function.
18. $f(x)=2 x+10$
19. $f(x)=\frac{2}{3} x-12$
17)
18) \qquad
19)

Graph each equation or inequality.
20. $y=3 x-2$

23. $y>-2 x-2$

21. $\mathrm{x}=-2$

24. $3 x-2 y<12$

25. $-4 \leq x-2 y \leq 6$

26. Find the distance between the points $(-2,2)$ and $(8,-3)$.
27. Find the slope of the line passing through $(-2,2)$ and $(8,-3)$.
28. Collinear points lie on the same line. Find the value of k for which the following
points are collinear: $(k, 3),(-3,2),(-1,1)$
27)
28) \qquad

29-34: Write two equations for each line, one in slope-intercept form $y=m x+b$ and one in point-slope form $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$.
29. slope $=5$; passes through the point $(3,-2)$
29) \qquad
30)
30. passes through the points $(3,11)$ and $(-6,5)$
31)
31. x -intercept $=3 ;$ y-intercept $=2$
32)
32. passes through the points $(3,3)$ and $(6,3)$
33. parallel to the line $y=-2 x+5$ and passes through the point $(1,4)$
33) \qquad
\qquad
34)
34. perpendicular to the line $y=2 x+6$; passes through the point $(0,9)$
\qquad
35. Are the graphs of $4 \mathrm{x}+3 \mathrm{y}+6=0$ and $\mathrm{y}=\frac{4}{3} \mathrm{x}+3$ parallel, perpendicular, or neither? Why?
38. Find the perimeter of $\Delta \mathrm{ABC}$ if the vertices are $\mathrm{A}(3,2), \mathrm{B}(3,-6)$, and $\mathrm{C}(6,-2)$ (hint: distance)
39. Solve the system by graphing, identify the intersection.

$$
\left\{\begin{array}{l}
3 x-y=6 \\
y=-x+6
\end{array}\right.
$$

39)

Solve each system of equations algebraically. (elimination or substitution)
40. $\left\{\begin{array}{c}3 x-2 y=7 \\ y=-x+4\end{array}\right.$ 41. $\left\{\begin{array}{l}4 x-3 y=15 \\ y=-2 x+5\end{array}\right.$
40) \qquad
41)
42. $\left\{\begin{array}{c}3 x+4 y=8 \\ -3 x-4 y=10\end{array}\right.$
43. $\left\{\begin{array}{l}3 x-2 y=-9 \\ 4 x+5 y=11\end{array}\right.$
42) \qquad
43) \qquad
44. $\left\{\begin{array}{c}x-2 y+z=7 \\ 3 x+y-z=2 \\ 2 x+3 y+2 z=7\end{array}\right.$
44) \qquad
45. The angles of a triangle measure $45^{\circ}, x^{\circ}$, and y°. If x is three times as much as y, write a system of two equations to represent the situation and solve for x and y.
45) $x=$ \qquad

$$
y=
$$

\qquad
46. Graph the system of inequalities, identify the vertices of the polygon.

$$
\begin{aligned}
& y \geq 0 \\
& x \geq 1 \\
& x+y \leq 6 \\
& 3 x+y \leq 12
\end{aligned}
$$

47-58: Simplify completely.
47. $3 y^{7} \cdot 2 y^{3} \cdot 5 y^{2}$
48. $\left(2 x^{4} y^{2} z\right)^{3}$
49. $\frac{18 m^{8} n^{6}}{-9 m n^{7}}$
50. $\left(3 a^{4} c^{-2}\right)^{3}\left(-3 a c^{3}\right)^{2}$
47)
46) four vertices:
\qquad
\qquad
\qquad
\qquad
48) \qquad
49)

$$
50)
$$

51. $\sqrt{27 r^{4} s^{5}}$
52. $\sqrt[3]{8 m^{6} n^{9}}$
51)
52)
53. $\frac{\sqrt{5}}{\sqrt{12}}$
54. $\sqrt{-147}$
55. $27^{\frac{2}{3}}$
56. $64^{\frac{-5}{6}}$
55)
56)
57)
57. $(2 r+7)^{2}$
58. $(c+4)(c-3)(c+3)$
58) \qquad

Factor completely.
59. $6 x^{2}-2 x-20$
60. $x^{3}+3 x^{2}-4 x-12$
59) \qquad
60) \qquad
61. Fill in the table for the function $f(x)=x^{3}-4 x^{2}-x+4$

x	-3	-2	-1	0	1	2	3	4	5
$f(x)$									

63. Write a function that has roots at $x=2,6$.
63) \qquad

64-65: Solve by the quadratic formula.
64)
64. $2 x^{2}+8 x+26=0$
65. $5 x^{2}-3=-7 x+8$ (round answers to hundredths)
65) \qquad
66. Using the function: $y=x^{2}-4 x-5$.

Fill in the table with values, then graph.

x	-2	-1	0	1	2	3	4	5	6
y									

Identify the roots of the function

67. Given that -3 is a root of the function $h(x)=x^{3}+2 x^{2}-5 x-6$, use synthetic division and factoring to identify the other roots.
67) \qquad
68. List all of the Trigonometric Ratios for angle A

Evaluate
72. $\sin 30^{\circ}$
73. $\tan 45^{\circ}$
72)
73)
74. What is the hypotenuse of a right triangle with legs both equal to 10 inches?
74)

74-75: Refer to the diagram, find all missing measurements using trigonometry.
Round to hundredths when necessary.

$m \angle B=$
75) $a=$

$$
c=
$$

$m \angle A=$
76) $m \angle B=$
$c=$

